Illuminating the dark spaces of healthcare with ambient intelligence

Amber
  • 1.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015). This paper reviews developments in deep learning and explains common neural network architectures such as convolutional and recurrent neural networks when applied to visual and natural language-processing tasks.

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 3.

    Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019). This perspective describes the use of computer vision, natural language processing, speech recognition and reinforcement learning for medical imaging tasks, electronic health record analysis, robotic-assisted surgery and genomic research.

    CAS 

    Google Scholar
     

  • 4.

    Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019). This review outlines how artificial intelligence is used by clinicians, patients and health systems to interpret medical images, find workflow efficiencies and promote patient self-care.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Sutton, R. T. et al. An overview of clinical decision support systems: benefits, risks, and strategies for success. NPJ Digit. Med. 3, 17 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Yeung, S., Downing, N. L., Fei-Fei, L. & Milstein, A. Bedside computer vision — moving artificial intelligence from driver assistance to patient safety. N. Engl. J. Med. 378, 1271–1273 (2018).


    Google Scholar
     

  • 7.

    Haynes, A. B. et al. A surgical safety checklist to reduce morbidity and mortality in a global population. N. Engl. J. Med. 360, 491–499 (2009).

    CAS 

    Google Scholar
     

  • 8.

    Makary, M. A. & Daniel, M. Medical error—the third leading cause of death in the US. Br. Med. J. 353, i2139 (2016).


    Google Scholar
     

  • 9.

    Tallentire, V. R., Smith, S. E., Skinner, J. & Cameron, H. S. Exploring error in team-based acute care scenarios: an observational study from the United Kingdom. Acad. Med. 87, 792–798 (2012).


    Google Scholar
     

  • 10.

    Yang, T. et al. Evaluation of medical malpractice litigations in China, 2002–2011. J. Forensic Sci. Med. 2, 185–189 (2016).


    Google Scholar
     

  • 11.

    Pol, M. C., ter Riet, G., van Hartingsveldt, M., Kröse, B. & Buurman, B. M. Effectiveness of sensor monitoring in a rehabilitation programme for older patients after hip fracture: a three-arm stepped wedge randomised trial. Age Ageing 48, 650–657 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Fritz, R. L. & Dermody, G. A nurse-driven method for developing artificial intelligence in “smart” homes for aging-in-place. Nurs. Outlook 67, 140–153 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Kaye, J. A. et al. F5-05-04: ecologically valid assessment of life activities: unobtrusive continuous monitoring with sensors. Alzheimers Dement. 12, P374 (2016).


    Google Scholar
     

  • 14.

    Acampora, G., Cook, D. J., Rashidi, P. & Vasilakos, A. V. A survey on ambient intelligence in health care. Proc IEEE Inst. Electr. Electron. Eng. 101, 2470–2494 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Cook, D. J., Duncan, G., Sprint, G. & Fritz, R. Using smart city technology to make healthcare smarter. Proc IEEE Inst. Electr. Electron. Eng. 106, 708–722 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Centers for Disease Control and Prevention. National Health Interview Survey: Summary Health Statistics https://www.cdc.gov/nchs/nhis/shs.htm (2018).

  • 17.

    NHS Digital. Hospital Admitted Patient Care and Adult Critical Care Activity 2018–19 https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-care-activity/2018-19 (NHS, 2019).

  • 18.

    Patel, R. S., Bachu, R., Adikey, A., Malik, M. & Shah, M. Factors related to physician burnout and its consequences: a review. Behav. Sci. (Basel) 8, 98 (2018).


    Google Scholar
     

  • 19.

    Lyon, M. et al. Rural ED transfers due to lack of radiology services. Am. J. Emerg. Med. 33, 1630–1634 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Adams, J. G. & Walls, R. M. Supporting the health care workforce during the COVID-19 global epidemic. J. Am. Med. Assoc. 323, 1439–1440 (2020).

    CAS 

    Google Scholar
     

  • 21.

    Halpern, N. A., Goldman, D. A., Tan, K. S. & Pastores, S. M. Trends in critical care beds and use among population groups and Medicare and Medicaid beneficiaries in the United States: 2000–2010. Crit. Care Med. 44, 1490–1499 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Halpern, N. A. & Pastores, S. M. Critical care medicine in the United States 2000–2005: an analysis of bed numbers, occupancy rates, payer mix, and costs. Crit. Care Med. 38, 65–71 (2010).


    Google Scholar
     

  • 23.

    Hermans, G. et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am. J. Respir. Crit. Care Med. 190, 410–420 (2014).


    Google Scholar
     

  • 24.

    Zhang, L. et al. Early mobilization of critically ill patients in the intensive care unit: a systematic review and meta-analysis. PLoS ONE 14, e0223185 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Donchin, Y. et al. A look into the nature and causes of human errors in the intensive care unit. Crit. Care Med. 23, 294–300 (1995).

    CAS 

    Google Scholar
     

  • 26.

    Hodgson, C. L., Berney, S., Harrold, M., Saxena, M. & Bellomo, R. Clinical review: early patient mobilization in the ICU. Crit. Care 17, 207 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Verceles, A. C. & Hager, E. R. Use of accelerometry to monitor physical activity in critically ill subjects: a systematic review. Respir. Care 60, 1330–1336 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Ma, A. J. et al. Measuring patient mobility in the ICU using a novel noninvasive sensor. Crit. Care Med. 45, 630–636 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Yeung, S. et al. A computer vision system for deep learning-based detection of patient mobilization activities in the ICU. NPJ Digit. Med. 2, 11 (2019). This study used computer vision to simultaneously categorize patient mobilization activities in intensive care units and count the number of healthcare personnel involved in each activity.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Davoudi, A. et al. Intelligent ICU for autonomous patient monitoring using pervasive sensing and deep learning. Sci. Rep. 9, 8020 (2019).This study used cameras and wearable sensors to track the physical movement of delirious and non-delirious patients in an intensive care unit.

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    WHO. Report on the Burden of Endemic Health Care-associated Infection Worldwide https://apps.who.int/iris/handle/10665/80135 (2011).

  • 32.

    Vincent, J.-L. Nosocomial infections in adult intensive-care units. Lancet 361, 2068–2077 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Gould, D. J., Moralejo, D., Drey, N., Chudleigh, J. H. & Taljaard, M. Interventions to improve hand hygiene compliance in patient care. Cochrane Database Syst. Rev. 9, CD005186 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Srigley, J. A., Furness, C. D., Baker, G. R. & Gardam, M. Quantification of the Hawthorne effect in hand hygiene compliance monitoring using an electronic monitoring system: a retrospective cohort study. BMJ Qual. Saf. 23, 974–980 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Shirehjini, A. A. N., Yassine, A. & Shirmohammadi, S. Equipment location in hospitals using RFID-based positioning system. IEEE Trans. Inf. Technol. Biomed. 16, 1058–1069 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Sax, H. et al. ‘My five moments for hand hygiene’: a user-centred design approach to understand, train, monitor and report hand hygiene. J. Hosp. Infect. 67, 9–21 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Haque, A. et al. Towards vision-based smart hospitals: a system for tracking and monitoring hand hygiene compliance. In Proc. 2nd Machine Learning for Healthcare Conference 75–87 (PMLR, 2017). This study evaluated the performance of depth sensors and covert auditors at measuring hand hygiene compliance in a hospital unit.

  • 38.

    Singh, A. et al. Automatic detection of hand hygiene using computer vision technology. J. Am. Med. Inform. Assoc. https://doi.org/10.1093/jamia/ocaa115 (2020).

  • 39.

    Chen, J., Cremer, J. F., Zarei, K., Segre, A. M. & Polgreen, P. M. Using computer vision and depth sensing to measure healthcare worker-patient contacts and personal protective equipment adherence within hospital rooms. Open Forum Infect. Dis. 3, ofv200 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Awwad, S., Tarvade, S., Piccardi, M. & Gattas, D. J. The use of privacy-protected computer vision to measure the quality of healthcare worker hand hygiene. Int. J. Qual. Health Care 31, 36–42 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Weiser, T. G. et al. An estimation of the global volume of surgery: a modelling strategy based on available data. Lancet 372, 139–144 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Anderson, O., Davis, R., Hanna, G. B. & Vincent, C. A. Surgical adverse events: a systematic review. Am. J. Surg. 206, 253–262 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Bonrath, E. M., Dedy, N. J., Gordon, L. E. & Grantcharov, T. P. Comprehensive surgical coaching enhances surgical skill in the operating room: a randomized controlled trial. Ann. Surg. 262, 205–212 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Vaidya, A. et al. Current status of technical skills assessment tools in surgery: a systematic review. J. Surg. Res. 246, 342–378 (2020).


    Google Scholar
     

  • 45.

    Ghasemloonia, A. et al. Surgical skill assessment using motion quality and smoothness. J. Surg. Educ. 74, 295–305 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Khalid, S., Goldenberg, M., Grantcharov, T., Taati, B. & Rudzicz, F. Evaluation of deep learning models for identifying surgical actions and measuring performance. JAMA Netw. Open 3, e201664 (2020).


    Google Scholar
     

  • 47.

    Law, H., Ghani, K. & Deng, J. Surgeon Technical skill assessment using computer vision based analysis. In Proc. 2nd Machine Learning for Healthcare Conference 88–99 (PMLR, 2017).

  • 48.

    Jin, A. et al. Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In Proc. Winter Conference on Applications of Computer Vision 691–699 (IEEE, 2018).

  • 49.

    Twinanda, A. P. et al. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36, 86–97 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Hashimoto, D. A., Rosman, G., Rus, D. & Meireles, O. R. Artificial intelligence in surgery: promises and perils. Ann. Surg. 268, 70–76 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Greenberg, C. C., Regenbogen, S. E., Lipsitz, S. R., Diaz-Flores, R. & Gawande, A. A. The frequency and significance of discrepancies in the surgical count. Ann. Surg. 248, 337–341 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Agrawal, A. Counting matters: lessons from the root cause analysis of a retained surgical item. Jt. Comm. J. Qual. Patient Saf. 38, 566–574 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Hempel, S. et al. Wrong-site surgery, retained surgical items, and surgical fires: a systematic review of surgical never events. JAMA Surg. 150, 796–805 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Cima, R. R. et al. Using a data-matrix-coded sponge counting system across a surgical practice: impact after 18 months. Jt. Comm. J. Qual. Patient Saf. 37, 51–58 (2011).


    Google Scholar
     

  • 55.

    Rupp, C. C. et al. Effectiveness of a radiofrequency detection system as an adjunct to manual counting protocols for tracking surgical sponges: a prospective trial of 2,285 patients. J. Am. Coll. Surg. 215, 524–533 (2012).


    Google Scholar
     

  • 56.

    Kassahun, Y. et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int. J. Comput. Assist. Radiol. Surg. 11, 553–568 (2016).


    Google Scholar
     

  • 57.

    Kadkhodamohammadi, A., Gangi, A., de Mathelin, M. & Padoy, N. A multi-view RGB-D approach for human pose estimation in operating rooms. In Proc. Winter Conference on Applications of Computer Vision 363–372 (IEEE, 2017).

  • 58.

    Jung, J. J., Jüni, P., Lebovic, G. & Grantcharov, T. First-year analysis of the operating room black box study. Ann. Surg. 271, 122–127 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Joukes, E., Abu-Hanna, A., Cornet, R. & de Keizer, N. F. Time spent on dedicated patient care and documentation tasks before and after the introduction of a structured and standardized electronic health record. Appl. Clin. Inform. 9, 46–53 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Heaton, H. A., Castaneda-Guarderas, A., Trotter, E. R., Erwin, P. J. & Bellolio, M. F. Effect of scribes on patient throughput, revenue, and patient and provider satisfaction: a systematic review and meta-analysis. Am. J. Emerg. Med. 34, 2018–2028 (2016).


    Google Scholar
     

  • 61.

    Rich, N. The impact of working as a medical scribe. Am. J. Emerg. Med. 35, 513 (2017).


    Google Scholar
     

  • 62.

    Boulton, C. How Google Glass automates patient documentation for dignity health. Wall Street Journal (16 June 2014).

  • 63.

    Blackley, S. V., Huynh, J., Wang, L., Korach, Z. & Zhou, L. Speech recognition for clinical documentation from 1990 to 2018: a systematic review. J. Am. Med. Inform. Assoc. 26, 324–338 (2019).


    Google Scholar
     

  • 64.

    Chiu, C.-C. et al. Speech recognition for medical conversations. In Proc. 18th Annual Conference of the International Speech Communication Association 2972–2976 (ISCA, 2018). This paper developed a speech-recognition algorithm to transcribe anonymized conversations between patients and clinicians.

  • 65.

    Pranaat, R. et al. Use of simulation based on an electronic health records environment to evaluate the structure and accuracy of notes generated by medical scribes: proof-of-concept study. JMIR Med. Inform. 5, e30 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 66.

    Kaplan, R. S. et al. Using time-driven activity-based costing to identify value improvement opportunities in healthcare. J. Healthc. Manag. 59, 399–412 (2014).


    Google Scholar
     

  • 67.

    Porter, M. E. Value-based health care delivery. Ann. Surg. 248, 503–509 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Keel, G., Savage, C., Rafiq, M. & Mazzocato, P. Time-driven activity-based costing in health care: a systematic review of the literature. Health Policy 121, 755–763 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    French, K. E. et al. Measuring the value of process improvement initiatives in a preoperative assessment center using time-driven activity-based costing. Healthcare 1, 136–142 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Sánchez, D., Tentori, M. & Favela, J. Activity recognition for the smart hospital. IEEE Intelligent Systems 23, 50–57 (2008).


    Google Scholar
     

  • 71.

    United Nations. World Population Ageing 2019 https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2019_worldpopulationageing_report.pdf (2020).

  • 72.

    Mamikonian-Zarpas, A. & Laganá, L. The relationship between older adults’ risk for a future fall and difficulty performing activities of daily living. J. Aging Gerontol. 3, 8–16 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Stineman, M. G. et al. All-cause 1-, 5-, and 10-year mortality in elderly people according to activities of daily living stage. J. Am. Geriatr. Soc. 60, 485–492 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Phelan, E. A., Williams, B., Penninx, B. W. J. H., LoGerfo, J. P. & Leveille, S. G. Activities of daily living function and disability in older adults in a randomized trial of the health enhancement program. J. Gerontol. A 59, M838–M843 (2004).


    Google Scholar
     

  • 75.

    Carlsson, G., Haak, M., Nygren, C. & Iwarsson, S. Self-reported versus professionally assessed functional limitations in community-dwelling very old individuals. Int. J. Rehabil. Res. 35, 299–304 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Wang, Z., Yang, Z. & Dong, T. A review of wearable technologies for elderly care that can accurately track indoor position, recognize physical activities and monitor vital signs in real time. Sensors 17, 341 (2017).

    CAS 

    Google Scholar
     

  • 77.

    Katz, S. Assessing self-maintenance: activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatr. Soc. 31, 721–727 (1983).

    CAS 

    Google Scholar
     

  • 78.

    Uddin, M. Z., Khaksar, W. & Torresen, J. Ambient sensors for elderly care and independent living: a survey. Sensors 18, 2027 (2018).


    Google Scholar
     

  • 79.

    Luo, Z. et al. Computer vision-based descriptive analytics of seniors’ daily activities for long-term health monitoring. In Proc. 3rd Machine Learning for Healthcare Conference 1–18 (PMLR, 2018). This study created spatial and temporal summaries of activities of daily living using a depth and thermal sensor inside the bedroom of an older resident.

  • 80.

    Cheng, H., Liu, Z., Zhao, Y., Ye, G. & Sun, X. Real world activity summary for senior home monitoring. Multimedia Tools Appl. 70, 177–197 (2014).


    Google Scholar
     

  • 81.

    Lee, M.-T., Jang, Y. & Chang, W.-Y. How do impairments in cognitive functions affect activities of daily living functions in older adults? PLoS ONE 14, e0218112 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Chen, J., Zhang, J., Kam, A. H. & Shue, L. An automatic acoustic bathroom monitoring system. In Proc. International Symposium on Circuits and Systems 1750–1753 (IEEE, 2005).

  • 83.

    Shrestha, A. et al. Elderly care: activities of daily living classification with an S band radar. J. Eng. 2019, 7601–7606 (2019).


    Google Scholar
     

  • 84.

    Ganz, D. A. & Latham, N. K. Prevention of falls in community-dwelling older adults. N. Engl. J. Med. 382, 734–743 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Bergen, G., Stevens, M. R. & Burns, E. R. Falls and fall injuries among adults aged ≥65 years — United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 65, 993–998 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Wild, D., Nayak, U. S. & Isaacs, B. How dangerous are falls in old people at home? Br. Med. J. (Clin. Res. Ed.) 282, 266–268 (1981).

    CAS 

    Google Scholar
     

  • 87.

    Scheffer, A. C., Schuurmans, M. J., van Dijk, N., van der Hooft, T. & de Rooij, S. E. Fear of falling: measurement strategy, prevalence, risk factors and consequences among older persons. Age Ageing 37, 19–24 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Pol, M. et al. Older people’s perspectives regarding the use of sensor monitoring in their home. Gerontologist 56, 485–493 (2016).


    Google Scholar
     

  • 89.

    Erol, B., Amin, M. G. & Boashash, B. Range-Doppler radar sensor fusion for fall detection. In Proc. IEEE Radar Conference 819–824 (IEEE, 2017).

  • 90.

    Chaudhuri, S., Thompson, H. & Demiris, G. Fall detection devices and their use with older adults: a systematic review. J. Geriatr. Phys. Ther. 37, 178–196 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Tegou, T. et al. A low-cost indoor activity monitoring system for detecting frailty in older adults. Sensors 19, 452 (2019).


    Google Scholar
     

  • 92.

    Rantz, M. et al. Automated in-home fall risk assessment and detection sensor system for elders. Gerontologist 55, S78–S87 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Su, B. Y., Ho, K. C., Rantz, M. J. & Skubic, M. Doppler radar fall activity detection using the wavelet transform. IEEE Trans. Biomed. Eng. 62, 865–875 (2015).


    Google Scholar
     

  • 94.

    Stone, E. E. & Skubic, M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE J. Biomed. Health Inform. 19, 290–301 (2015).


    Google Scholar
     

  • 95.

    Rantz, M. et al. Randomized trial of intelligent sensor system for early illness alerts in senior housing. J. Am. Med. Dir. Assoc. 18, 860–870 (2017). This randomized trial investigated the clinical efficacy of a real-time intervention system—triggered by abnormal gait patterns, as detected by ambient sensors—on the walking ability of older individuals at home.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Kwolek, B. & Kepski, M. Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Programs Biomed. 117, 489–501 (2014).


    Google Scholar
     

  • 97.

    Wren, T. A. L., Gorton, G. E. III, Ounpuu, S. & Tucker, C. A. Efficacy of clinical gait analysis: a systematic review. Gait Posture 34, 149–153 (2011).


    Google Scholar
     

  • 98.

    Wren, T. A. et al. Outcomes of lower extremity orthopedic surgery in ambulatory children with cerebral palsy with and without gait analysis: results of a randomized controlled trial. Gait Posture 38, 236–241 (2013).


    Google Scholar
     

  • 99.

    Del Din, S. et al. Gait analysis with wearables predicts conversion to Parkinson disease. Ann. Neurol. 86, 357–367 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Kidziński, Ł., Delp, S. & Schwartz, M. Automatic real-time gait event detection in children using deep neural networks. PLoS ONE 14, e0211466 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Díaz, S., Stephenson, J. B. & Labrador, M. A. Use of wearable sensor technology in gait, balance, and range of motion analysis. Appl. Sci. 10, 234 (2020).


    Google Scholar
     

  • 102.

    Juen, J., Cheng, Q., Prieto-Centurion, V., Krishnan, J. A. & Schatz, B. Health monitors for chronic disease by gait analysis with mobile phones. Telemed. J. E Health 20, 1035–1041 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 103.

    Kononova, A. et al. The use of wearable activity trackers among older adults: focus group study of tracker perceptions, motivators, and barriers in the maintenance stage of behavior change. JMIR Mhealth Uhealth 7, e9832 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Da Gama, A., Fallavollita, P., Teichrieb, V., & Navab, N. Motor rehabilitation using Kinect: a systematic review. Games Health J. 4, 123–135 (2015).


    Google Scholar
     

  • 105.

    Cho, C.-W., Chao, W.-H., Lin, S.-H. & Chen, Y.-Y. A vision-based analysis system for gait recognition in patients with Parkinson’s disease. Expert Syst. Appl. 36, 7033–7039 (2009).


    Google Scholar
     

  • 106.

    Seifert, A., Zoubir, A. M. & Amin, M. G. Detection of gait asymmetry using indoor Doppler radar. In Proc. IEEE Radar Conference 1–6 (IEEE, 2019).

  • 107.

    Altaf, M. U. B., Butko, T., Juang, B. H. & Juang, B.-H. Acoustic gaits: gait analysis with footstep sounds. IEEE Trans. Biomed. Eng. 62, 2001–2011 (2015).


    Google Scholar
     

  • 108.

    Galna, B. et al. Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture 39, 1062–1068 (2014).


    Google Scholar
     

  • 109.

    Jaume-i-Capó, A., Martínez-Bueso, P., Moyà-Alcover, B. & Varona, J. Interactive rehabilitation system for improvement of balance therapies in people with cerebral palsy. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 419–427 (2014).


    Google Scholar
     

  • 110.

    Tinetti, M. E., Williams, T. F. & Mayewski, R. Fall risk index for elderly patients based on number of chronic disabilities. Am. J. Med. 80, 429–434 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 111.

    Wang, C. et al. Multimodal gait analysis based on wearable inertial and microphone sensors. In Proc. IEEE SmartWorld 1–8 (2017).

  • 112.

    Mental Health America. Mental Health in America – Adult Data 2018 https://www.mhanational.org/issues/mental-health-america-adult-data-2018 (2018).

  • 113.

    Wittchen, H. U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 114.

    Snowden, L. R. Bias in mental health assessment and intervention: theory and evidence. Am. J. Public Health 93, 239–243 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 115.

    Shatte, A. B. R., Hutchinson, D. M. & Teague, S. J. Machine learning in mental health: a scoping review of methods and applications. Psychol. Med. 49, 1426–1448 (2019).


    Google Scholar
     

  • 116.

    Chakraborty, D. et al. Assessment and prediction of negative symptoms of schizophrenia from RGB+ D movement signals. In Proc. 19th International Workshop on Multimedia Signal Processing 1–6 (2017).

  • 117.

    Pestian, J. P. et al. A controlled trial using natural language processing to examine the language of suicidal adolescents in the emergency department. Suicide Life Threat. Behav. 46, 154–159 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 118.

    Lutz, W., Leon, S. C., Martinovich, Z., Lyons, J. S. & Stiles, W. B. Therapist effects in outpatient psychotherapy: a three-level growth curve approach. J. Couns. Psychol. 54, 32–39 (2007).


    Google Scholar
     

  • 119.

    Miner, A. S. et al. Assessing the accuracy of automatic speech recognition for psychotherapy. NPJ Digit. Med. 3, 82 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Xiao, B., Imel, Z. E., Georgiou, P. G., Atkins, D. C. & Narayanan, S. S. “Rate my therapist”: automated detection of empathy in drug and alcohol counseling via speech and language processing. PLoS ONE 10, e0143055 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 121.

    Ewbank, M. P. et al. Quantifying the association between psychotherapy content and clinical outcomes using deep learning. JAMA Psychiatry 77, 35–43 (2020).


    Google Scholar
     

  • 122.

    Sadeghian, A., Alahi, A. & Savarese, S. Tracking the untrackable: learning to track multiple cues with long-term dependencies. In Proc. Conference on Computer Vision and Pattern Recognition 300–311 (IEEE, 2017).

  • 123.

    Liu, G. et al. Image inpainting for irregular holes using partial convolutions. In Proc. 15th European Conference on Computer Vision 89–105 (Springer, 2018).

  • 124.

    Marafioti, A., Perraudin, N., Holighaus, N. & Majdak, P. A context encoder for audio inpainting. IEEE/ACM Trans. Audio Speech Lang. Process. 27, 2362–2372 (2019).


    Google Scholar
     

  • 125.

    Chen, Y., Tian, Y. & He, M. Monocular human pose estimation: a survey of deep learning-based methods. Comput. Vis. Image Underst. 192, 102897 (2020).


    Google Scholar
     

  • 126.

    Krishna, R. et al. Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123, 32–73 (2017).

    MathSciNet 

    Google Scholar
     

  • 127.

    Johnson, J. et al. Image retrieval using scene graphs. In Proc. Conference on Computer Vision and Pattern Recognition 3668–3678 (IEEE, 2015).

  • 128.

    Shi, J., Zhang, H. & Li, J. Explainable and explicit visual reasoning over scene graphs. In Proc. Conference on Computer Vision and Pattern Recognition 8368–8376 (IEEE/CVF, 2019).

  • 129.

    Halamka, J. D. Early experiences with big data at an academic medical center. Health Aff. 33, 1132–1138 (2014).


    Google Scholar
     

  • 130.

    Verbraeken, J. et al. A survey on distributed machine learning. ACM Comput. Surv. 53, 30 (2020).


    Google Scholar
     

  • 131.

    You, Y. et al. Large batch optimization for deep learning: training BERT in 76 minutes. In Proc. 8th International Conference on Learning Representations 1–38 (2020).

  • 132.

    Kitaev, N., Kaiser, Ł. & Levskaya, A. Reformer: the efficient transformer. In Proc. 8th International Conference on Learning Representations 1–12 (2020).

  • 133.

    Heilbron, F., Niebles, J. & Ghanem, B. Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In Proc. Conference on Computer Vision and Pattern Recognition 1914–1923 (IEEE, 2016).

  • 134.

    Zhu, Y., Lan, Z., Newsam, S. & Hauptmann, A. Hidden two-stream convolutional networks for action recognition. In Proc. 14th Asian Conference on Computer Vision 363–378 (Springer, 2019).

  • 135.

    Han, S., Mao, H. & Dally, W. J. Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding. In Proc. 4th International Conference on Learning Representations 1–14 (2016). This paper introduced a method to compress neural network models and reduce their computational and storage requirements.

  • 136.

    Micikeviciusd, P. et al. Mixed precision training. In Proc. 6th International Conference on Learning Representations 1–12 (2018).

  • 137.

    Yu, G. & Yuan, J. Fast action proposals for human action detection and search. In Proc. Conference on Computer Vision and Pattern Recognition 1302–1311 (IEEE, 2015).

  • 138.

    Zou, J. & Schiebinger, L. AI can be sexist and racist — it’s time to make it fair. Nature 559, 324–326 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 139.

    Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J. & Weinberger, K. Q. On fairness and calibration. Adv. Neural Inf. Process. Syst. 30, 5680–5689 (2017).


    Google Scholar
     

  • 140.

    Neyshabur, B., Bhojanapalli, S., McAllester, D. & Srebro, N. Exploring generalization in deep learning. Adv. Neural Inf. Process. Syst. 30, 5947–5956 (2017).

  • 141.

    Howard, J. & Ruder, S. Universal language model fine-tuning for text classification. In Proc. 56th Annual Meeting of the Association for Computational Linguistics 328–339 (2018).

  • 142.

    Pan, S. J. & Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010).


    Google Scholar
     

  • 143.

    Patel, V. M., Gopalan, R., Li, R. & Chellappa, R. Visual domain adaptation: a survey of recent advances. IEEE Signal Process. Mag. 32, 53–69 (2015).

    ADS 

    Google Scholar
     

  • 144.

    Wang, Y., Kwok, J., Ni, L. M. & Yao, Q. Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. 53, 63 (2020).


    Google Scholar
     

  • 145.

    Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 389–399 (2019).


    Google Scholar
     

  • 146.

    Li, C., Lubecke, V. M., Boric-Lubecke, O. & Lin, J. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. IEEE Trans. Microw. Theory Tech. 61, 2046–2060 (2013).

    ADS 

    Google Scholar
     

  • 147.

    Rockhold, F., Nisen, P. & Freeman, A. Data sharing at a crossroads. N. Engl. J. Med. 375, 1115–1117 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 148.

    Wiens, J. et al. Do no harm: a roadmap for responsible machine learning for health care. Nat. Med. 25, 1337–1340 (2019).

    CAS 

    Google Scholar
     

  • 149.

    El Emam, K., Jonker, E., Arbuckle, L. & Malin, B. A systematic review of re-identification attacks on health data. PLoS ONE 6, e28071 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    Nasrollahi, K. & Moeslund, T. Super-resolution: a comprehensive survey. Mach. Vis. Appl. 25, 1423–1468 (2014).


    Google Scholar
     

  • 151.

    Brewster, T. How an amateur rap crew stole surveillance tech that tracks almost every American. Forbes Magazine (12 October 2018).

  • 152.

    Cutler, J. E. How can patients make money off their medical data? Bloomberg Law (29 January 2019).

  • 153.

    Cahan, E. M., Hernandez-Boussard, T., Thadaney-Israni, S. & Rubin, D. L. Putting the data before the algorithm in big data addressing personalized healthcare. NPJ Digit. Med. 2, 78 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 154.

    Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G. & Chin, M. H. Ensuring fairness in machine learning to advance health equity. Ann. Intern. Med. 169, 866–872 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Char, D. S., Shah, N. H. & Magnus, D. Implementing machine learning in health care — addressing ethical challenges. N. Engl. J. Med. 378, 981–983 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 156.

    Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. In Proc. 1st Conference on Fairness, Accountability and Transparency 77–91 (2018).

  • 157.

    Chen, I. Y., Szolovits, P. & Ghassemi, M. Can AI help reduce disparities in general medical and mental health care? AMA J. Ethics 21, E167–E179 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 158.

    Wolff, R. F. et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann. Intern. Med. 170, 51–58 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 159.

    Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl Acad. Sci. USA 116, 22071–22080 (2019). This article proposed a framework for evaluating model interpretability through predictive accuracy, descriptive accuracy and relevancy.

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 160.

    He, J. et al. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 25, 30–36 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 161.

    Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. M. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Ann. Intern. Med. 162, 55–63 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 162.

    Mitchell, M. et al. Model cards for model reporting. In Proc. 2nd Conference on Fairness, Accountability, and Transparency 220–229 (2019).

  • 163.

    Thomas, R. et al. Deliberative democracy and cancer screening consent: a randomised control trial of the effect of a community jury on men’s knowledge about and intentions to participate in PSA screening. BMJ Open 4, e005691 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 164.

    Otto, J. L., Holodniy, M. & DeFraites, R. F. Public health practice is not research. Am. J. Public Health 104, 596–602 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 165.

    Gerke, S., Yeung, S. & Cohen, I. G. Ethical and legal aspects of ambient intelligence in hospitals. J. Am. Med. Assoc. 323, 601–602 (2020).


    Google Scholar
     

  • 166.

    Kim, J. W., Jang, B. & Yoo, H. Privacy-preserving aggregation of personal health data streams. PLoS ONE 13, e0207639 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 167.

    van der Maaten, L., Postma, E. & van den Herik, J. Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10, 13 (2009).


    Google Scholar
     

  • 168.

    Kocabas, M., Athanasiou, N. & Black, M. J. VIBE: video inference for human body pose and shape estimation. In Proc. Conference on Computer Vision and Pattern Recognition 5253–5263 (IEEE/CVF, 2020).

  • 169.

    McMahan, H. B., Moore, E., Ramage, D., Hampson, S. & Arcas, B. A. Communication-efficient learning of deep networks from decentralized data. In Proc. 20th International Conference on Artificial Intelligence and Statistics 1273–1282 (PMLR, 2017). This paper proposed federated learning, a method for training a shared model while the data is distributed across multiple client devices.

  • 170.

    Gentry, C. Fully homomorphic encryption using ideal lattices. In Proc 41st Symposium on Theory of Computing 169–178 (ACM, 2009). This paper proposed the first fully homomorphic encryption scheme that supports addition and multiplication on encrypted data.

  • 171.

    McCoy, S. T. Aboard USNS Comfort (US Navy, 2003).

  • Next Post

    Lemonade Is An Interesting Technology Play In The Insurance Industry (NYSE:LMND)

    Lemonade (LMND) is a pioneer of the rapidly growing insurtech industry. The company is leveraging technology to improve efficiencies and reduce bureaucracy in insurance. Lemonade, which is built upon an entirely digital substrate, is looking to upend the traditional insurance industry with the use of bots and machine learning. Changing […]

    You May Like